NI43-101 Technical Report

on the
Marudi Property
Guyana

2° 13' 31" NORTH
59° 10' 1" WEST

For
Swift Resources Inc
Suite 510,
580 Hornby Street,
Vancouver, B.C.

By
Derrick Strickland, P. Geo.

November 30 th 2016

Photo of DDH MH12-130 2012 Drill program
Table of Contents

1. Summary ... 4
2. INTRODUCTION .. 6
 2.1 Units and Measurements ... 7
3. RELIANCE ON OTHER EXPERTS .. 7
4. PROPERTY DESCRIPTION AND LOCATION ... 8
5. ACCESSIBILITY, CLIMATE, PHYSIOGRAPHY, LOCAL RESOURCES, AND INFRASTRUCTURE ... 9
6. HISTORY ... 12
 6.1 Rupununi Gold Company 1946-1949 ... 12
 6.2 NorMan Mines Ltd. 1981 .. 12
 6.3 Noranda Inc. 1984 ... 12
 6.4 Eastern Caribbean Mining Development (Guyana) Ltd 1988-1990 ... 13
 6.5 Romanex Guyana Exploration Ltd - Sutton Resources Ltd 1990-1999 13
 6.6 Vanessa Ventures Ltd 1999-2005 .. 15
 6.6.1 2004-2005 drill program .. 16
 6.7 Shoreham Resources Ltd./Guyana Frontier Mining Corp. ... 20
 6.7.1 Highlights of the 2011 Trenching Program ... 24
 6.7.2 Guyana Frontier's 2012 drilling program ... 25
7. GEOLOGICAL SETTING AND MINERALIZATION ... 29
 7.1 Regional Geology ... 29
8. DEPOSIT TYPES .. 33
9. EXPLORATION .. 35
10. DRILLING .. 35
11. SAMPLING PREPARATION, ANALYSIS AND SECURITY ... 35
12. DATA VERIFICATION .. 36
13. MINERAL PROCESSING AND METALLURGICAL TESTING .. 39
14. MINERAL RESOURCES ... 40
15. ADJACENT PROPERTIES .. 40
16. OTHER RELEVANT DATA AND INFORMATION ... 41
17. INTERPRETATION AND CONCLUSIONS ... 43
18. RECOMMENDATIONS .. 44
19. REFERENCES ... 46
20. CERTIFICATE OF AUTHOR ... 48
21. DATE AND SIGNATURE PAGE ... 49

List of Figures

- Figure 1: Regional Location Map .. 10
- Figure 2: Marudi Property Mining Licence ... 11
- Figure 3: Summary Historical Drilling ... 14
- Figure 4: Vanessa Summary Gold Values in Soil .. 17
- Figure 5: Shoreham trench and Trado grids ... 21
- Figure 6: Trado Drilling Results - Shoreham 2007 ... 22
- Figure 7: Mazoa Hill trench pan concentrate results ... 23
- Figure 8: Known Trench Locations ... 26
- Figure 9: Select Assay and Gold Point Data Trench 6 and Trench 4 27
- Figure 10: Regional Geology .. 31
- Figure 11: Local Geology ... 32
- Figure 12: Paleoproterozoic reconstruction of the Guiana and West African shields 34
- Figure 13: Schematic diagrams ... 35
- Figure 14: Author Collected Samples .. 38
- Figure 15: Internal Artisanal Workings ... 42
List of Tables

Table 1: Definitions, Abbreviations and Conversions .. 7
Table 2: Table 4. Significant (>1.0 g Au) gold intercepts from 2004 Vannessa program 18
Table 3: Historical Estimates .. 19
Table 4: 2011 Trench Values .. 25
Table 5: 2012 Select Drill Results .. 28
Table 6: Author Collected Sample and Select Assay ... 37
Table 7: Summary of Expenditure Stage One .. 44
Table 8: Summary of Expenditure Stage two ... 45
1 Summary

This report was commissioned by Swift Resources Inc. ("Swift") with offices at, Suite 510, 580 Hornby Street, Vancouver, British Columbia, and was prepared by Mr. Derrick Strickland, P. Geo. The author is a "qualified person" who is "independent" of Swift within the meaning of National Instrument 43-101 – Standards of Disclosure for Mineral Projects. As an independent geologist the author was asked to undertake a review of the available data and recommend (if warranted) further work on the Marudi Property (the "Property"). The purpose of this report is to summarize historical work on the Property. This is in support of a property acquisition for Swift.

The Marudi Property is made of a Mining Licence (ML1/2009) that is 13,502 ha in size and is located within southern Guyana near the border with Brazil, with a centroid of 59° 10' 1" W longitude and 2° 13' 31" N latitude. The usual access from Georgetown is by fixed-wing aircraft capable of landing on the short gravel airstrip at Aishalton. From Aishalton a track leads southeast over ten kilometres of savannah, to the forest edge at Bushmouth. From Bushmouth to the Marudi camp (32 kilometres), the track gradually deteriorates. Four-wheel drive is essential and during the rainy season. A farm tractor and trailer is the dependable supply transport method. The author visited the Property from November 11th, 2016 to November 12th, 2016.

Swift entered into a purchase agreement, dated November 1, 2016, where the company can acquire all of the outstanding shares of Romanex Guyana Exploration Ltd ("Romanex"). Romanex holds 100% interest in the Marudi Property. In consideration Swift will issue 4,000,000 shares and 1,250,000 24-month warrants to Locke Goldsmith and Marshall Mintz. In addition, Swift will pay $750,000 (USD) over four years to Falcon Logistics Inc. (a Guyana registered company). Swift gave a non-refundable deposit to Falcon Logistics of $65,000 (USD).

The Marudi Property is underlain by Proterozoic metasediments of the Kwitaro Group and the younger Southern Guyana Granite Complex. The Kwitaro Group is mostly comprised of shallow water metasediments with interbedded basic volcanic strata which are metamorphosed to amphibolites facies (Berrangé, 1972). The Southern Guyana Granite Complex is part of the tectono-thermal Trans-Amazonian Orogenic Cycle which resulted in block faulting, crustal shortening, folding, metamorphism, and anatexi (Hurley, et. al. 1967). Locally the Marudi Property is dominated by the Marudi Formation of the Kwitaro Group which includes a lower pelitic unit, a medial quartzite and meta-andesite unit with subordinate tuff and ironstone (the "quartzite" unit). These rocks are overlain by a massive unit of orthoamphibolite (metabasalt). These metasedimentary and metavolcanic rocks have been subjected to upper greenschist and lower amphibolite grade regional metamorphism. The Marudi granodiorite lies mostly north of the north flank of Marudi Mountain. Metasedimentary and metavolcanic units at the Marudi Property have been complexly deformed with at least two local and three regional generations of folding recognized. Fold axes and beds have been offset by a significant northwest striking fault which cuts the Mazoa Hill anticline. Displacement on this fault is uncertain.

Gold mineralization at the Marudi Property is regarded as being related to iron-formation hosted gold deposits which occur in other cratonic greenstone belts. Iron-formation hosted gold deposits and occurrences can be divided into two sub-types: stratiform and non-stratiform. At the Marudi Property, all important gold mineralization discovered to date is associated with the medial "quartzite" unit of the Marudi Mountain Formation. Gold occurs within the magnetite-hematite rich quartzite and in the magnetite-silicate iron formation.

Goldsmith in 2011 recognized that population of high gold tends to cluster above and near quartzite/metachert subcrop and in adjacent saprolite derived from mafic rock with scattered decomposed quartzite remnants. Sources are tentatively interpreted to be auriferous horizons in the stratigraphically lowest interval of quartzite in repeated beds intercalated with mafic flows. Values continue in saprolite samples easterly and downslope, Au levels decreasing with distance from quartzite. Saprolite creep has probably dispersed Au downslope from weathered quartzite bedrock sources.
The central zone, which includes Mazoa Hill, Peace Creek and Marudi Mountain, is characterized by fine gold associated with massive iron formation, locally lenticular and relatively continuous, and extensive coarse brecciated metavolcanics, locally silicified. The north Zone, historically productive areas of Toucan Hill and Paunch Creek, is characterized by fine and very fine gold, associated with massive iron formations with extensive breccia in intercalated andesitic volcanic rocks.

A two staged exploration program is recommended going forward. Stage One includes compiling all the known data in to a Geographic Information System (GIS), commencement of the government required Environmental and Social Impact Assessment (ESIA) and undertaking test pitting of the saprolite in the areas identified by Goldsmith in 2011. The expected cost for Stage One of the program is $225,500 (USD). Stage Two is contingent on the results on Stage One. The Stage Two program would include expanding the test pits by taking larger bulk samples of the saprolite, and processing it on-site. Also a 2000 meter drill program to test the hard rock and this could possibly lead to a resource definition. The expected cost of Stage Two is $2,018,500 (USD).
2 INTRODUCTION

This report was commissioned by Swift Resources Inc. ("Swift") with offices at, Suite 510, 580 Hornby Street, Vancouver, British Columbia, and was prepared by Mr. Derrick Strickland, P. Geo. The author is a “qualified person” who is “independent” of Swift within the meaning of National Instrument 43-101 – Standards of Disclosure for Mineral Projects. As an independent geologist the author was asked to undertake a review of the available data and recommend (if warranted) further work on the Marudi Property (the “Property”). The purpose of this report is to summarize historical work on the Property. This is in support of a property acquisition for Swift.

In the preparation of this report, the author utilized available geological maps, geological reports and claim maps. A list of reports, maps and other information examined is provided in the Section 19 of this report.

The author visited the Property with Locke Goldsmith and Marshall Mintz whom are both Vendors of the Property from November 11th, 2016 to November 12th, 2016, at which time the author reviewed data, the geological setting and conducted sampling. The author collected six rock samples and one soil sample on the Property. Unless otherwise stated, maps in this report were created by the author.

The author was retained to complete this report in compliance with NI 43-101 and Form 43-101F1. The author is a “qualified person” within the meaning of NI 43-101. This report is intended to be filed with the securities regulators of all the provinces of Canada except for Quebec.

The author has no reason to doubt the reliability of the information provided by Swift on which this report is based.

The author reserves the right, but will not be obliged to, revise this report and its conclusions if additional information becomes known subsequent to the date of this report.

The information, opinions, and conclusions contained herein are based on:

- Information available to the author at the time of preparation of this report;
- Assumptions, conditions, and qualifications as set forth in this report; and
- Data, reports, and other information supplied by Swift and other third party sources cited in this report.

This evaluation of the Marudi Property is partially based on historical data derived from historical work including rock sampling and assay results that are critical elements of this review. The description of sampling techniques utilized by previous workers is poorly described and therefore, the historical assay results must be considered with prudence.

In 2009 Shoreham Resources Ltd. generated a NI 43-101 which included the current configuration of the Marudi Property. This report generated by Lunceford (2009) represents the most recent compressive report that is available to the author. Much of the data used to create Lunceford 2009 report is not available to the author of this report. The drilling database that was reviewed by Lunceford is not available to the author of this report. The Lunceford (2009) is the basis for this report and is us extensively herein.

The average exchange rate for the Canadian dollar to the American dollar is 1 USD= 0.753578 CDN for November 25, 2015 to November 25, 2016.
2.1 Units and Measurements

Table 1: Definitions, Abbreviations and Conversions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Abbreviation</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asl</td>
<td>above sea level</td>
<td>ICP</td>
<td>Inductively Coupled Plasma</td>
</tr>
<tr>
<td>%</td>
<td>Percent</td>
<td>In</td>
<td>Inch(ies)</td>
</tr>
<tr>
<td><</td>
<td>Less than</td>
<td>Kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>></td>
<td>Greater than</td>
<td>Kg/m²</td>
<td>Kilograms per square metre</td>
</tr>
<tr>
<td>°</td>
<td>Degree</td>
<td>kg/t</td>
<td>Kilograms per tonne</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
<td>km</td>
<td>kilometre(s)</td>
</tr>
<tr>
<td>µm</td>
<td>Micrometre (micron)</td>
<td>km²</td>
<td>Square kilometre</td>
</tr>
<tr>
<td>1 gram</td>
<td>0. 3215 troy oz.</td>
<td>Kt</td>
<td>Thousand tonnes</td>
</tr>
<tr>
<td>1 oz.</td>
<td></td>
<td>M</td>
<td>Metre</td>
</tr>
<tr>
<td>/Ton</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 troy oz.</td>
<td>31. 104 gm</td>
<td>M</td>
<td>Million</td>
</tr>
<tr>
<td>A</td>
<td>Year (annum)</td>
<td>m²</td>
<td>Square metre</td>
</tr>
<tr>
<td>Cm</td>
<td>Centimetre</td>
<td>Ma</td>
<td>Million years ago</td>
</tr>
<tr>
<td>Cu</td>
<td>Cooper</td>
<td>Masl</td>
<td>Metres above sea level</td>
</tr>
<tr>
<td>DDH</td>
<td>Diamond drill hole</td>
<td>mm</td>
<td>millimetre(s)</td>
</tr>
<tr>
<td>DEM</td>
<td>digital elevation model</td>
<td>Mt</td>
<td>Million tonnes</td>
</tr>
<tr>
<td>n. a.</td>
<td></td>
<td></td>
<td>n. a. not available/applicable</td>
</tr>
<tr>
<td>Fn, FMn</td>
<td>Formation</td>
<td>NI 43-101</td>
<td>Canadian National Instrument 43-101</td>
</tr>
<tr>
<td>g or gm</td>
<td>gram(s)</td>
<td>oz. troy ounce</td>
<td></td>
</tr>
<tr>
<td>g/t</td>
<td>grams per metric tonne</td>
<td>P. Geo.</td>
<td>Professional Geoscientist</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
<td>Pb</td>
<td>Lead</td>
</tr>
<tr>
<td>IP</td>
<td>Induced Polarization</td>
<td>ppb</td>
<td>parts per billion</td>
</tr>
<tr>
<td>GGMC</td>
<td>Guyana Geology and Mines Commission</td>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>H</td>
<td>Hour</td>
<td>PLs</td>
<td>Prospecting Licences</td>
</tr>
<tr>
<td>ha</td>
<td>hectare(s)</td>
<td>QA</td>
<td>quality assurance</td>
</tr>
<tr>
<td>ICP-MS</td>
<td>inductively Coupled Plasma-Mass Spectrometry</td>
<td>QC</td>
<td>quality control</td>
</tr>
</tbody>
</table>

3 RELIANCE ON OTHER EXPERTS

The author has relied on the representations by Swift and Romanex Guyana Exploration Ltd (“Romanex”), with respect to the current configuration and validly of the Marudi Property mining lease. The author has not verified the mineral tenure of Marudi Property.

As of the date of this report, the author is not aware of any material fact or material change with respect to the subject matter of this technical report that is not presented herein, or which the omission to disclose could make this report misleading.
4 PROPERTY DESCRIPTION AND LOCATION

The project area consists of one surveyed Mining Licence (ML1/2009) that is 13,502 ha in size. The property is located on 1:50,000 topographic map sheet Marudi 77NE and Marudi 77SE in region nine of Guyana. The property is centered at 59° 10' 1" W longitude and 2° 13' 31" N latitude (Figure 1 and Figure 2).

The land survey of the Marudi Mining License is described as follows:

From a reference point located at the confluence of Kwitaro and Powis Rivers located at geographical coordinates of longitude 59° 3' 27" W and latitude 2° 19' 13" N, thence at true bearing of 249°, for a distance of approximately 8 miles, 358 yards, to Point A, located at geographical coordinates of longitude 59° 10' 9" W and latitude 2° 16' 34" N, thence at true bearing of 146° for a distance of approximately 5 miles, 1,162 yards, to Point B, located at geographical coordinates of longitude 59° 7' 23" and latitude 2° 2' 28" N, thence at true bearing of 236° for a distance of approximately 3 miles, 1,230 yards to Point C, located at geographical coordinates of longitude 59° 10' 3" W and latitude 2° 10' 39" N, thence at true bearing of 325°, for a distance of approximately 5 miles, 1,073 yards, to Point D, located at geographical coordinates of longitude 59° 12' 43" W and latitude 2° 14' 41" N, thence at true bearing of 55° for a distance of approximately 3 miles, 1,327 yards, to Point of commencement A.

Within the Marudi Mining License are three other mineral leases totaling 94 ha that are not part of licence. Figure 2 shows the approximate location of these smaller mining leases. The locations for the smaller leases were established by the Vendor flying around in a helicopter and GPSing the locations of the boundaries.

Swift entered into a purchase agreement, dated November 1, 2016, where the company can acquire all of the outstanding shares of, Romanex. In consideration Swift will issue 4,000,000 shares and 1,250,000 24-month warrants to Locke Goldsmith and Marshall Mintz (Vendors). In addition, Swift will pay $750,000 (USD) over four years to Falcon Logistics Inc. (a Guyana registered company). Swift gave a non-refundable deposit to Falcon Logistics of $65,000 (USD).

Romanex is a privately held mineral exploration company incorporated under the laws of the Republic of Guyana. Romanex holds a 100% interest in the Marudi Property.

The cash payments of a four-year period are as follows:
- A. $125,000 (USD) on before first anniversary date and the commencement of a Bulk Sample Production on the Property;
- B. $100,000 (USD) on before first year anniversary date of item "A" above;
- C. $250,000 (USD) on before second year anniversary date of item "A" above;
- D. $300,000 (USD) on before third year anniversary date of item "A" above

Swift will provide a loan of $200,000 (USD) to the Vendors with funds of $100,000 (USD) to be advanced by November 15, 2016 and a further $100,000 to be advanced by November 30, 2016, for work on the Property. In the agreement, the loan is guaranteed by Falcon Logistics Inc.

In June 2003 Romanex applied for conversion of the Prospecting License to a Mining License and on April 17, 2009 Mining License (ML1/2009) was granted. Pursuant to Guyanese law the application consisted of a Positive Feasibility Study, Mine Plan, an Environmental Impact Statement and an Environmental Management Plan. As provided for in the Mining Act of 1989 the rental for a Mining License is currently fixed at US$5.00 per acre per year. The Mining License was granted for a twenty year term with a right of renewal for an additional seven years or the life of the deposit whichever is shorter. Production of gold from the Marudi Property is subject to payment to the Government of Guyana as a 5% ad valorem tax on gold and 1.5% on all other minerals produced. Approval of the Mining License allows for tax free importation of all equipment, supplies, and spare materials to be used in the production of gold and other minerals from the Marudi Property. Additionally, production records must be maintained, annual reports filed and reclamation completed when the operation ceases.
5 ACCESSIBILITY, CLIMATE, PHYSIOGRAPHY, LOCAL RESOURCES, AND INFRASTRUCTURE

After Lunceford (2009)

The Marudi Property Mining Lease is centered on Marudi Mountain in southwestern Guyana located about 60 kilometres east of the international border with Brazil. It is 35 kilometres southeast of Aishalton, an Amerindian village on the savannah and the communication center of the South Rupununi District.

The surface route from Georgetown to Lethem is approximately 500 kilometres and has been used to mobilize equipment, vehicles and drilling supplies to the Marudi Property since 1991. The portion of the road form Lethem northward to Karupukari, the crossing point on the Essequibo River, was significantly upgraded during 1991 and 1992. At the Georgetown end, the road has benefited from the Omai development and is in reasonable condition to Marubra Hill.

The Mabura Hill to Kurupukari section is approximately 100 kilometres and is presently very well maintained. From Kurupukari to Lethem is very well maintained and the trip from Georgetown to Lethem takes from 9.5 to 10 hours including ferry crossing at Kurupukari.

Surface access to Aishalton from Brazil, Venezuela and from Georgetown is also possible. Diesel fuel and gasoline has been supplied to the Marudi Property by tanker truck from Georgetown to Lethem to Aishalton to Bush Mouth. Wholesale fuel sales are also available at Lethem in 3 locations.

Diesel fuel and gasoline has been supplied to the Marudi Property by truck from Boa Vista, Brazil through the border at Lethem and then southeast for 120 kilometres through Dadanawa to Aishalton.

The Aishalton track leads southeast over ten kilometres of savannah to the forest edge at Bushmouth. From Bushmouth to Marudi, the track gradually deteriorates. Four-wheel drive is essential, and during the rainy season a farm tractor and trailer – sometimes assisted by a caterpillar tractor – is the dependable supply transport method. Supervisory personnel, mail, and some freight are carried by 4-wheel drive ATV units. Travel time from Aishalton to the Marudi camp is approximately five hours but can stretch to ten hours or more during the rainy season.
Figure 2: Marudi Property Mining Licence

Marudi ML - 1/2009
(13,502 Acres)

- ~ 52 ha Atkinson small claims
- ~ 32 ha N. Lamazon small claims
- ~ 20 ha S. Young small claims
All activities at Marudi are serviced by an extensive and well-established field camp. The camp facilities include wooden structures with cement or wooden floors for bunk houses, offices, kitchen, dining rooms, generator, bathroom/shower, fuel depot, generator, and core storage.

The Marudi Property is located between 260 m to 520 m above sea level. The terrain varies from gently sloping uplands to relatively steep mountain slopes within the Marudi Mountains which dominate the Property. Natural vegetation consists of small to large tropical shrubs and trees. Organic soil cover ranges up to 0.3 m in thickness and saprolite extends to depths exceeding 50 m.

Guyana has a tropical climate with almost uniformly high temperatures and humidity, and much rainfall. Seasonal variations in temperature are slight, particularly along the coast. Locations in the interior, away from the moderating influence of the ocean, experience slightly wider variations in daily temperature, and night-time readings as low as 12°C have been recorded. Humidity in the interior is also slightly lower, averaging around 60 percent.

Rainfall is heaviest in the northwest and lightest in the southeast and interior. Annual averages on the coast near the Venezuelan border are near 250 centimetres, south of Georgetown at New Amsterdam 200 centimetres, and 150 centimetres in southern Guyana’s Rupununi Savannah. Areas on the northeast sides of mountains that catch the trade winds average as much as 350 centimetres of precipitation annually. Although rain falls throughout the year, about 50% of the annual total arrives in the summer rainy season that extends from May to the end of July along the coast and from April through September farther inland. Coastal areas have a second rainy season from November through January. Rain generally falls in heavy afternoon showers or thunderstorms. Overcast days are rare; most days include four to eight hours of sunshine from morning through early afternoon (http://countrystudies.us/guyana/21.htm, 2016).

6 HISTORY

6.1 Rupununi Gold Company 1946-1949

Lunceford (2009) reported that from 1946 to 1949: Rupununi Gold Company (“Rupununi”) conducted geologic mapping, prospecting, test pitting and trenching, and completed 59 drill holes totaling 10,670 m. Additionally, a test adit was driven to 84 m in the west flank of Mazoa Hill but funding precluded completion of the adit short of the objective. In 1949, Rupununi made an estimate of 459,000 cubic metres grading 0.45 grams per cubic metre available in creeks draining away from Marudi Mountain (Imbert, 2008).

6.2 NorMan Mines Ltd. 1981

Lunceford (2009) reported that in 1981: NorMan Mines Ltd. (“NorMan”), drilled two holes at Mazoa Hill, and completed preliminary metallurgical work by Witteck Development Inc. NorMan also performed an alluvial sampling program on Mazoa in 1981-82, and estimated gold concentrations between 0.62 and 1.24 grams per tonne (Imbert, 2008).

6.3 Noranda Inc. 1984

1984: Noranda Inc., Guyana Mining Enterprise, and the GGMC, extended the adit at Mazoa Hill to 183 m and intersected 9 m of high grade” mineralization in quartzite. Figure 3 is summary map of the known drilling on the property available to the author.
6.4 Eastern Caribbean Mining Development (Guyana) Ltd 1988-1990

Lunceford (2009) reported that from 1988 to 1990: Eastern Caribbean Mining Development (Guyana) Ltd. conducted geologic mapping, soil and geochemical surveys, trenching, geophysics, and established a control grid. Geologists recognized the “iron formation” association with gold but focused on Mazoa and Marudi targets only and did not apply the model to investigate other surrounding exploration targets.

6.5 Romanex Guyana Exploration Ltd -Sutton Resources Ltd 1990-1999

1990 to 1991: Romanex was formed by Sutton Resources Ltd. (“Sutton”). Access and camp construction was completed in fall 1990 and diamond drilling commenced in May 1991. Drilling (72 holes totalling 14,468 m) was focused primarily on Mazoa Hill with limited drill tests of Marudi, Peace, and Toucan targets. Magnetic/VLF, soil and rock chip surveys were completed (Lunceford, 2009).

1992: Romanex completed eighteen diamond drill holes (Phase I, totaling 4,400 m) at Mazoa Hill and three holes in Marudi Ridge. At Marudi auger holes tested interpreted northwest trending veins and holes intersected footwall zones below mineralized breccias. Mazoa auger holes intercepted a thickened lens of brecciated gold-bearing iron formation within andesite and quartzite. Romanex commissioned metallurgical work by Westcoast Testing (Vancouver) including bench scale gravity, flotation, cyanide leaching studies. Results were deemed positive (Figure 3).

1993: Romanex completed Phase II drilling (2,626 m) including nine diamond drill holes in Marudi, Toucan, and below Mazoa. Subsequent focus was placed on Mazoa “resource definition”.

1994: Phase III drilling continued with 34 holes totaling 7,309 metres.

1995: Optimized grinding, gravity followed by flotation/cyanidation metallurgical studies were completed by Lakefield Research (Toronto, Ontario) which indicated recoveries to up to 98%. Romanex commissioned a Kilborn Engineering Ltd. to complete a “pre-feasibility study” that concluded the capital expenditure model required additional resources to be of economic interest.
Figure 3: Summary Historical Drilling
6.6 Vanessa Ventures Ltd 1999-2005

1999 to 2000: Vanessa Ventures Ltd (“Vannessa”) acquired Romanex on July 22, 1999. Vannessa completed compilations and field validation to confirm previous data and expanded the auger geochemical survey (Figure 4). The company also completed an in-house feasibility study with the objective to mine the upper portion of the Mazoa deposit and the surrounding gold-bearing saprolite.

2004 to 2005: Thirteen diamond drill holes accruing 2,627 m were completed, including five on Mazoa, four on the Peace Creek target and four on the Marudi zone. Ten trenches totaling 670 m generally failed to penetrate saprolite. A global database of past/recent project data was generated. In late 2004, based on all drill holes completed to date, Vannessa completed an in-house “pre-feasibility study” of the Mazoa Hill resource (Figure 3).

Lunceford (2009) reported that in early 2004(b) R.P. Ilchik, a consulting geologist retained by Vannessa, conducted a comprehensive review of existing pre-2004 diamond drill data base just prior to commencement of Vannessa’s thirteen-hole diamond drill program. Ilchik reviewed data in Vannessa’s Georgetown office and conducted a five day site evaluation during which core stored at the Marudi camp was reviewed. The objective of the evaluation was to review and evaluate the existing drill data base, make recommendations regarding a planned drill confirmation and step-out drill campaign and complete a “resource” evaluation.

Following his assessment of the pre-2004 drill data base, Ilchik made several observations and recommendations:

The data from earlier drill programs (Rupununi, NorMan) is incomplete and does not allow for a thorough evaluation. Ilchik regarded the Romanex data as better preserved, consisting of assay, collar data and general lithologic categorization of the 72 drill holes completed from 1991 to 1994. No drill logs from this program were located and only lithologic descriptions used in the Kilborn [1995] study were available.

- Down-hole drift data were provided as part of the data set for the existing drilling. A review of the data showed a consistent drifts (0.05° or 0.1°/m in Az, and -0.1°/m in dip), but no data was found indicating that down-hole surveys were actually done. Indeed, in one report it was mentioned that an older operator on the property had done some HF drip surveys for a few holes and found that the dips varied systematically. Because no data were found indicating that these surveys were actually performed, they were not incorporated into the analysis of the drilling data.

Drill logs for the nearly 15,000 m [completed at Mazoa Hill] of diamond drill core are not available or are inadequate. He suggested re-logging all available core, paying special attention to structural features, systematic selection of rock units (i.e. limiting the use of assessing the potential of similar “quartzite” exposures elsewhere on the property and elsewhere in the region.

- In 1995 much of the drill core was stored in rapidly deteriorating containers and he suggested archiving reference intervals or re-boxing the core.

- Ilchik noted several discrepancies between collar elevations logged in the field and those indicated in the data set, and the down-hole drift data provide in the data set. He recommended a re-survey of all collar locations.

- Ilchik noted that prior to his study no formal geostatistical studies had been completed to support resource evaluations. He recommended that a more complete study of the existing data to assure that proper procedures are in place regarding drill density, etc. and other parameters. Similarly, prior to the Vannessa work no geotechnical data were documented for the core.

The recommendations and suggestions of Ilchik (2004b), to the extent possible Vannessa attempted to compile, verify and rationalize the drill data base (Caumartin, 2005). The core was stored in rapidly deteriorating cardboard containers and in 2004, all failing core boxes were replaced by new ones. During
the 2004 program, some 1,900 metres of core from nineteen different holes was re-logged. Pre-2004 core was selectively re-assayed (134 samples) which indicated some inconsistencies between drill logs and 2004 assay results. Different rock classification systems have been used prior to 2004 to describe the Marudi rock units, with little rationalization between data sets. Romanex geologists used 57 different rock codes, the details of which were not evident to Caumartin, in their drill database and Vannessa geologists proposed a simplified base system using ten rock codes.

6.6.1 2004-2005 drill program

Lunceford (2009) reported that Caumartin (2005) outlined the objective of the 2004 drilling program was to investigate and assess the potential for 1.0 million ounces of gold in the Mazoa mineralized zone by in-fill drilling and identifying extensions to known mineralization by step-out drilling. Logging and sampling procedures recommended by Ilchik (2004b) were followed and a consolidated and validated database was produced. Five diamond drill holes totaling about 1,500 m were completed on Mazoa, four on the Peace Creek target and four on the Marudi zone with the objective to test extensions to known targets (Figure 3).

The reader is cautioned that the author has been unable to locate the database used by Ilchik, 2004 and Caumartin, 2005. There author has not been able to review or comment on this data. The information referred to should not be relied upon and is provided as an historical archive on the property.

Mazoa Zone

1,500 metres were drilled in five holes in order to test the extensions of Mazoa deposit the significant sections are described below.

MR04-02: The hole was drilled along the northwestern footwall of the known mineralized zone. Two quartzite units were intersected from 144.5 to 169.1 and 249.8 to 270.2 in metasediment/volcanic rock units. In the first quartzite unit: 4.57 g/t Au was intersected over 12.8 m, while the second returned only 1.16 g/t Au over 2.5 m from 264.0 to 266.5. From 76.4 to 78.7: 6.79 g/t over 2.3 metres was intersected in a carbonate-pyrite sub-horizontal structure.

MR04-05: Drilled in the country rock along northeast hanging wall of the mineralized body. This hole returned from 284.2 to 286.5: 2.03 g/t Au over 2.3 m in quartzite-meta volcanics.

MR04-06: Drilled across the Mazoa zone this hole tested a gap under the mineralized zone. This hole crossed from 130.1 to 284.3 five quartzite units within the metavolcanic envelope. Several mineralized sections were intersected from 193.2 to 218.2 with several gold values reaching up to 12 g/t Au and averaging 2.06 g/t over 25 m. From 270.4 to 272.5 pyrrhotite stringers in metasediments returned 7.94 g/t over 2.1 m.

Peace Creek Zone

In order to test the mineralized structure previously developed by Rupununi Mines (1946-1949), four diamond drill holes totalling 453 m were completed on Peace Creek. The Peace Creek program was successful in confirming the localization of former workings and showings and a greater than expected mineralized zone exists at depth and east of Peace Creek Zone. The significant sections are described below.

MR04-01: This hole was drilled to intercept mineralized veins that were partly explored underground by “pork-knockers”. The 63 m hole intersected a mineralized vein grading 4.65 g/t Au over 1.5 m from 25.6 to 26.2 in the overburden.
Figure 4: Vanessa Summary Gold Values in Soil
After Lunceford, 2009

Soil Samples (2000) .
(ppm Au)

- 1
0.5 to 1
0.2 to 0.5
0.1 to 0.2
0 to 0.1

FeO Silica Breccia
Stratiform Silicic Zone
Property Boundary

Lithological Units
- Chert, Iron Formation Quartzite
- Granite-granodiorite
- Metadolerite, Amphibolite
- Marudi Formation Metasedimentary Rocks

Contour Interval: 100 ft
Datum: PSAD56 UTM21N

Marudi Mountain Project
2000 (Vanessa) Soil Results - Gold
Combined Geochemistry and Geology
By: K. Martens Date: 10 Nov 2009
Scale: as shown
MR04-07: Located in order to test the northeast extension of the mineralized vein (MR04-01), this drill hole intersected from 89.3 to 92.0: 4.91 g/t over 2.7 m.

MR04-13: This hole was drilled to provide a better section across the mineralized structure which was intersected by MR04-01. From 56.6 to 59.5 the assays averaged 3.49 g/t across 2.9 metres, and intersected highly siliceous rock. This confirmed that the vein intercepted in MR04-01 was in place and not transported.

Table 2: Table 4. Significant (>1.0 g Au) gold intercepts from 2004 Vannessa program

<table>
<thead>
<tr>
<th>HOLE-ID</th>
<th>From m</th>
<th>To m</th>
<th>Interval m</th>
<th>Au gpt</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR04-02</td>
<td>75.2</td>
<td>81</td>
<td>5.8</td>
<td>3.672</td>
<td>Mazoa FW upper zone</td>
</tr>
<tr>
<td>MR04-02</td>
<td>150.2</td>
<td>164.5</td>
<td>14.3</td>
<td>4.238</td>
<td>Mazoa Main zone</td>
</tr>
<tr>
<td>MR04-05</td>
<td>281.5</td>
<td>289.4</td>
<td>7.9</td>
<td>1.118</td>
<td>Mazoa FW lower zone</td>
</tr>
<tr>
<td>MR04-06</td>
<td>183.5</td>
<td>187.5</td>
<td>4</td>
<td>3.339</td>
<td>Mazoa HW zone</td>
</tr>
<tr>
<td>MR04-06</td>
<td>192.55</td>
<td>200.5</td>
<td>7.95</td>
<td>2.632</td>
<td>Mazoa HW zone</td>
</tr>
<tr>
<td>MR04-06</td>
<td>206.2</td>
<td>209.4</td>
<td>3.2</td>
<td>2.566</td>
<td>Mazoa Main zone</td>
</tr>
<tr>
<td>MR04-06</td>
<td>211.5</td>
<td>218.2</td>
<td>6.7</td>
<td>3.429</td>
<td>Mazoa Main zone</td>
</tr>
<tr>
<td>MR04-06</td>
<td>270.4</td>
<td>273.5</td>
<td>3.1</td>
<td>5.576</td>
<td>Mazoa FW lower zone</td>
</tr>
<tr>
<td>MR04-07</td>
<td>83.4</td>
<td>94</td>
<td>10.6</td>
<td>1.831</td>
<td>Peace Creek adit vein</td>
</tr>
<tr>
<td>MR04-08</td>
<td>127.9</td>
<td>132.5</td>
<td>4.6</td>
<td>1.805</td>
<td>Peace Creek adit vein</td>
</tr>
<tr>
<td>MR04-13</td>
<td>55.3</td>
<td>59.5</td>
<td>4.2</td>
<td>2.642</td>
<td>Peace Creek adit vein</td>
</tr>
</tbody>
</table>

The 2004-2005 program did not meet the Vannessa’s original overall objective for expansion of the target to the level of 1.0 million ounces gold. Three holes completed on the Marudi target were drilled parallel to the northeast trend of host stratigraphy and terminated in hanging-wall stratigraphy or lost in overburden. In-fill and step-out drilling had failed to significantly expand the resource at Mazoa Hill, largely due to an incomplete geologic model that failed to account for fault offsets and complex multi-fold events.

Year 2005

Various “resource” estimates were completed in 1990, 1992, and 1995. In 2004 these estimates were reviewed by R.P. Ilchick (2004b) a consulting geologist to Vannessa Ventures (Guyana) Ltd. who calculated an updated estimate based on his review of information available to him at the time.

- Lunceford (2009) reported that Caumartin (2005) stated that within the deposit, grade is found distributed unevenly, displaying a general plunge towards to southeast, which is believed to be caused artificially by the drilling pattern that was essentially drilled from north to south, i.e. more – or-less along strike and down dip on the mineralized zones. However, an unexpected cross pattern was observed to affect the distribution of gold while interpolating grade in the recent block modeling exercise.

The historical estimate presented below is relevant to the further exploration of the project which, the Company planning to undertake. A qualified person has not done sufficient work to classify the historical estimate as current mineral resources (or mineral reserves); and Swift is not treating the historical estimate as current mineral resources or mineral reserves; therefore they should not be relied upon. The term "drill indicated geologic resource" is a historical term used by Ilchick (2004b), that is not comparable to current CIM defined inferred resource, and should only be compared to a potential target requiring further exploration drilling to define an initial resource. There is no recent drill information on the Marudi Property, and further drilling will be required to attempt to upgrade and verify the historical estimate to a current mineral resource, and there is no certainty that this can be accomplished. This historic data set and model is not available for the project.
Table 3: Historical Estimates

<table>
<thead>
<tr>
<th>Prospect Name</th>
<th>Zone</th>
<th>Length (m)</th>
<th>Depth (m)</th>
<th>Thickness (m)</th>
<th>Density (g/t)</th>
<th>Grade (g/t)</th>
<th>Est. Oz. Au (t)</th>
<th>Est. Oz. Au (k)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. P. Ichik Speculative Estimates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Based on surface expressions; average grade from borehole results (\times) Tonnage.</td>
</tr>
<tr>
<td>Maze Hill Mein (NW)</td>
<td></td>
<td>180</td>
<td>80</td>
<td>150</td>
<td>0.4</td>
<td>1300</td>
<td>2.9</td>
<td>3,800</td>
<td>5.0</td>
</tr>
<tr>
<td>SE</td>
<td></td>
<td>90</td>
<td>30</td>
<td>150</td>
<td>0.4</td>
<td>200</td>
<td>2.9</td>
<td>600</td>
<td>5.0</td>
</tr>
<tr>
<td>Deep ore (255-225 m)</td>
<td></td>
<td>120</td>
<td>60</td>
<td>30</td>
<td>0.4</td>
<td>100</td>
<td>2.9</td>
<td>300</td>
<td>5.0</td>
</tr>
<tr>
<td>Maze Hill Totals</td>
<td></td>
<td>1,600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marudi Mtn.</td>
<td>Upper Locust Ck</td>
<td>150</td>
<td>30</td>
<td>200</td>
<td>0.5</td>
<td>500</td>
<td>2.7</td>
<td>1,400</td>
<td>2.7</td>
</tr>
<tr>
<td>Peace Creek speculative</td>
<td>100</td>
<td>4</td>
<td>100</td>
<td>0</td>
<td>40</td>
<td>2.7</td>
<td>110</td>
<td>10</td>
<td>1,100</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>1,510</td>
<td>4,700</td>
<td>23,500</td>
<td>760</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D.M. Jenkins, Ainsworth-Jenkins Holding Inc., 1990									22,500	760
Maze Hill		1,100	4.5	5,000	160					
Marudi Mtn.	Upper Locust Ck	7 to 14 M/M								
Peace Creek Jenkins (1990, near adit)		9	38	300	10					

N. Tribe & Assoc. Ltd., 1992									22,500	760
Maze Hill Category 1		410 to 180 m	2.2 to 2.7	4,400	2.3	10,100	320			
Category 2		410 to 180 m	2.2 to 2.7	1,700	2.0	3,400	110			
Totals Cat 1 & 2		6,100	13,500	430						

Kilborn Engineering Pacific Ltd., 1995									22,500	760
Maze Hill Measured	410 to 255 m	1,000	2.9	2,900	2.9	8,400	270			
Indicated	410 to 255 m	500	2.9	1,500	50					
Inferred	410 to 255 m	869	2.4	2,100	70					
Totals Maze Hill		4,260	12,000	350						
Marudi Ridge Indicated		1,400	1.8	2,500	80					
Inferred		450	1.3	600	20					
Totals Marudi Ridge		1,850	3,100	100						

| **Sutton Resources Ltd., 1995 (report of Kilborn Engineering Pacific Ltd., 1995, Measured, Indicated and Inferred)** | | | | | | | | | 22,500 | 760 |
| Maze Hill All | 410 to 255 m | 2.9 | 4,200 | 2.8 | 11,800 | 360 |
6.7 Shoreham Resources Ltd./Guyana Frontier Mining Corp.

In 2007 and 2008 Shoreham Resources Ltd. conducted exploration on the Marudi Property consisting of trenching, trado (similar to an auger) drilling, and geochemical sampling. The location of Shoreham work areas (Figure 5), were partially guided by results of grid soil sampling conducted by Vannessa in 2000.

Shoreham used a four man-portable powered drills (a “trado”) capable of sampling surficial materials (soils) and weathered bedrock up to 20 m depth. Over 5,000 metres were drilled primarily in two detailed grids referred to as Marudi East and Toucan Hill (Figure 5 and Figure 6). The field team completed 1,050 vertical holes in laterite and weathered bedrock, ranging in depth from 2 metres to 8 m, yielding 5,500 x 1 metre samples. The holes were not collared in previously known mineralized areas but were collared in a systematic grid to map and provide reliable samples of new target areas. Several trenches completed at Mazoa and one at Marudi was sampled by vertical cuts along walls and trado holes along the base. Qualitative assessment of gold potential was estimated by pan concentrates and visible gold counts from trenches cut at Mazoa Hill (Figure 7).

The Marudi East area is a small portion of the Marudi Mountain Target, in which no resources have been defined by previous work. The field work consisted of the collection of 1,325 samples, each of which represented a 1.0 metre interval in an array of shallow mechanized auger drill holes 420 of 1,324 auger holes samples were greater than 0.2 gram per tonne. Gold values range from detection limits to 29.6 grams per tonne across one metre intervals. The most encouraging of the shallow drill holes was terminated in well mineralized material and showed an average of 11.2 grams per tonne across 6.0 metres within a zone which averaged 1.36 grams per tonne across a target structure width of 120 metres.

Shoreham geologists identified new targets in the Toucan Hill area, with 391 of 3,615 samples exceeding 0.2 grams per tonne and sample values up to 23.0 grams per tonne. The study area covers only a small portion of what Shoreham geologists regard as a much larger zone of potential mineralization.

On January 31, 2011 Shoreham Resources Ltd. name changed its name to Guyana Frontier Mining Corp. (“Guyana Frontier”).

Guyana Frontier did not generate a report on their 2011-2012 exploration programs, which included trenching and drilling. Any information about the sampling procedures, QA/QC is derived directly from press releases. The author has not been presented information on the results of any QA/QC program undertaken by Guyana Frontier.

Nineteen trenches totaling 3,400.4 metres in length were excavated and sampled the Marudi North target area. The results of the trenching indicate gold mineralization is present in bedrock within the area tested.
Figure 5: Shoreham trench and Trado grids.
After Lunceford 2009
Figure 6: Trado Drilling Results - Shoreham 2007
After Lunceford 2009
Figure 7: Mazoa Hill trench pan concentrate results.
After Lunceford 2009
6.7.1 Highlights of the 2011 Trenching Program

A total of 1,059 soil samples, each weighing between 1 to 3 kilograms, were taken in continuous horizontal 3 metre intervals. In the first three trenches the sample interval was 5 metres, accounting for ten samples. Half the sample was hand panned down to count the presence of gold grains and the half was sent for assay see Table 4 for summary data (Figure 8 has the locations of the known trenches).

Guyana Frontier reported that Gold mineralization is associated with the subcrops of quartzite/metachert rocks found within the trenches, and consists of fine gold dust and gold grains up to 0.5 x 2.0 millimetres in size. The angular, wire, and hackly shapes of gold grains indicate that the gold recovered in pan concentrates has weathered in-situ from bedrock, and has not been transported from its source.

Subcrops of quartzite/metachert in Marudi North Trenches 04 and 06, for example, were exposed in horizontal widths of 5 to 40 metres, interbedded with saprolite after metavolcanics. Gold grains were observed in panned samples, usually located above and near quartzite. The greatest concentrations of gold occur towards the eastern, stratigraphically lower, downslope margin of quartzite, and in adjacent saprolite (Figure 9).

Outcrop patterns of quartzite are discontinuous along strike. A 290 degree normal fault or shear plane with apparent right lateral offset with the northern block down-dropped is interpreted to transect the local stratigraphy approximately parallel to, and between Trenches 04 and 06. The influence that a shear zone may have had upon genesis and distribution of gold mineralization at this site, other than interpreted offset, is not yet determined.

Bedding/foliation in quartzite and attitude of the quartzite/saprolite contact in the west end of Trench 06 when projected down dip, crosses the upper portion of historical drill hole 92-79 where quartzite and banded iron formation were observed. Original 1992 drill logs note visible gold in hole 92-79 between 138.90 to 145.92 metres, as measured in the length of the hole.

Locke Goldsmith, P. Geo, was the geologist responsible for the 2011 and 2012 programs concluded:

“A population of high values obtained from each sampling method tends to cluster above and near quartzite/metachert subcrop and in adjacent saprolite derived from mafic rock (SAP2) with scattered decomposed quartzite remnants. Field observations suggest that of this group the highest Au tends to occur above the eastern exposure of some quartzite subcrops. Sources are tentatively interpreted to be auriferous horizons in the stratigraphically lowest interval of quartzite in repeated beds intercalated with mafic flows. The NNE strike of bedding, and quartzite-SAP2, contacts and dips to the west, leading to a further interpretation that the local area is on the west limb of an anticline. The interpretation is influenced by observations in reports of previous investigations that refer to Au concentration in quartzite beds immediately above contacts with mafic metavolcanics. This population tends to be accompanied by slightly elevated arsenic.

Values continue in saprolite samples easterly and downslope, Au levels decreasing with distance from quartzite. Saprolite creep has probably dispersed Au downslope from weathered quartzite bedrock sources. The angular and wire shapes of Au observed in pan concentrates indicate that particles have not been transported in a high-energy colluvial system. Nor have particles precipitated as accreted rounded shapes around a nucleus of Au during chemical mobilization and transport in an acidic solution.

A second population of lower Au values appears in samples taken over quartzite, possibly from beds stratigraphically above a concentration of mineralization, or from different beds in the repeated sequence with metavolcanics. A characteristic of this group is relatively low arsenic levels at or below background.”
Table 4: 2011 Trench Values.

<table>
<thead>
<tr>
<th>Trench Name</th>
<th>Length (m)</th>
<th>Number of Samples With Range of Gold Values (grams/tonne Au)</th>
<th>Total No. of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 – 0.25</td>
<td>0.26-0.50</td>
<td>0.51-0.75</td>
</tr>
<tr>
<td>Trench 01</td>
<td>10</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Trench 02</td>
<td>10</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Trench 03</td>
<td>20</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Trench 04</td>
<td>342</td>
<td>46</td>
<td>32</td>
</tr>
<tr>
<td>Trench 04E</td>
<td>63</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Trench 05</td>
<td>13.4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Trench 06</td>
<td>216</td>
<td>37</td>
<td>21</td>
</tr>
<tr>
<td>Trench 06E</td>
<td>174</td>
<td>58</td>
<td>0</td>
</tr>
<tr>
<td>Trench 06W</td>
<td>30</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Trench 07</td>
<td>348</td>
<td>79</td>
<td>24</td>
</tr>
<tr>
<td>Trench 08</td>
<td>42</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Trench 09</td>
<td>138</td>
<td>47</td>
<td>4</td>
</tr>
<tr>
<td>Trench A</td>
<td>243</td>
<td>78</td>
<td>1</td>
</tr>
<tr>
<td>Trench B</td>
<td>286</td>
<td>75</td>
<td>7</td>
</tr>
<tr>
<td>Trench C</td>
<td>417</td>
<td>128</td>
<td>4</td>
</tr>
<tr>
<td>Trench D</td>
<td>252</td>
<td>83</td>
<td>0</td>
</tr>
<tr>
<td>Trench E</td>
<td>228</td>
<td>74</td>
<td>0</td>
</tr>
<tr>
<td>Trench F</td>
<td>294</td>
<td>87</td>
<td>4</td>
</tr>
<tr>
<td>Trench G</td>
<td>201</td>
<td>62</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>3,327.40</td>
<td>886</td>
<td>105</td>
</tr>
</tbody>
</table>

Guyana Frontier reported: “The gold assay results as shown above are susceptible to the ‘nugget effect’, that is, non-uniform distribution of individual gold grains can provide higher or lower assays when sample results are compared to the results of a duplicate sample”.

6.7.2 Guyana Frontier’s 2012 drilling program

Guyana Frontier’s 2012 drilling program, consisting of twelve holes totalling 1,977.47 metres, concluded in April, 2012. Three holes were drilled in the Mazoa Hill target area, and the remaining nine holes were drilled in the Marudi North target area (Figure 3).
Figure 8: Known Trench Locations
Figure 9: Select Assay and Gold Point Data Trench 6 and Trench 4
Table 5: 2012 Select Drill Results

<table>
<thead>
<tr>
<th>Hole No.</th>
<th>Azimuth (degrees)</th>
<th>Dip (degrees)</th>
<th>Final Depth of Hole (m)</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Interval (m)</th>
<th>Gold Intercept (grams/tonne)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MH12-130</td>
<td>181°</td>
<td>-50</td>
<td>68.3</td>
<td>3</td>
<td>11</td>
<td>8</td>
<td>1.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>59</td>
<td>65.5</td>
<td>6.5</td>
<td>14.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>including 63.17</td>
<td>64.63</td>
<td>1.46</td>
<td>51.7</td>
</tr>
<tr>
<td>MH12-131</td>
<td>180°</td>
<td>-50</td>
<td>270</td>
<td>31.25</td>
<td>39.78</td>
<td>8.53</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>62.5</td>
<td>67</td>
<td>4.5</td>
<td>2.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75.5</td>
<td>109.09</td>
<td>33.59</td>
<td>1.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>including 99.87</td>
<td>100.1</td>
<td>0.23</td>
<td>22.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and 106</td>
<td>107.08</td>
<td>1.08</td>
<td>13.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>116.69</td>
<td>142.3</td>
<td>25.61</td>
<td>3.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>including 120.25</td>
<td>126.42</td>
<td>6.17</td>
<td>10.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and 130.41</td>
<td>132.41</td>
<td>2</td>
<td>9.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>148</td>
<td>212.5</td>
<td>64.5</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>218.5</td>
<td>232.5</td>
<td>14</td>
<td>0.94</td>
</tr>
<tr>
<td>MH12-132</td>
<td>186°</td>
<td>-50</td>
<td>201</td>
<td>0</td>
<td>12</td>
<td>12</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>47.03</td>
<td>84.5</td>
<td>37.47</td>
<td>2.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>including 63.44</td>
<td>74.5</td>
<td>11.06</td>
<td>5.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>including 66.5</td>
<td>68.5</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and 82.5</td>
<td>84.5</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>92.37</td>
<td>134</td>
<td>41.63</td>
<td>1.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>including 109.6</td>
<td>111</td>
<td>1.4</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and 140.07</td>
<td>154.13</td>
<td>14.06</td>
<td>0.38</td>
</tr>
<tr>
<td>MN12-133</td>
<td>119°</td>
<td>-50</td>
<td>163.5</td>
<td>9.08</td>
<td>18</td>
<td>8.92</td>
<td>2.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>159.7</td>
<td>163.5</td>
<td>3.8</td>
<td>0.32</td>
</tr>
<tr>
<td>MN12-134</td>
<td>119°</td>
<td>-70</td>
<td>97.67</td>
<td>12.5</td>
<td>30.05</td>
<td>17.55</td>
<td>4.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30.05</td>
<td>39</td>
<td>8.95</td>
<td>0.3</td>
</tr>
<tr>
<td>MH12-135</td>
<td>290°</td>
<td>-60</td>
<td>268.5</td>
<td>23.26</td>
<td>55.5</td>
<td>32.24</td>
<td>1.8</td>
</tr>
<tr>
<td>MN12-137</td>
<td>115°</td>
<td>-55</td>
<td>292.5</td>
<td>195.13</td>
<td>204.94</td>
<td>9.81</td>
<td>0.78</td>
</tr>
<tr>
<td>MN12-140</td>
<td>140°</td>
<td>-55</td>
<td>139.5</td>
<td>48.97</td>
<td>57.16</td>
<td>9.19</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>72.5</td>
<td>80.5</td>
<td>8</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>including 74.5</td>
<td>78.5</td>
<td>4</td>
<td>3.4</td>
</tr>
<tr>
<td>MN12-141</td>
<td>165°</td>
<td>-55</td>
<td>110</td>
<td>36</td>
<td>42.5</td>
<td>8.95</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>66</td>
<td>6</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Guyana Frontier's reported the true widths of the mineralized intervals above and the geometry of the mineralized zones are not currently known. Mineralized intervals were calculated using a cut-off grade of 0.1 g/t. Intervals containing below cut-off grade were excluded from the calculations when they were six metres or greater in length.

Guyana Frontier's three Mazoa Hill 2012 drill holes showed gold mineralization, as indicated by holes MH12-130, -131 and -132. For example, hole MH12-132 returned a weighted average of 2.59 grams/tonne gold over 37.47 metres from 47.03 to 84.5 metres, which included 11.06 metres of 5.85 grams/tonne gold from 63.44 to 74.5 metres, and 2.0 metres of 11.0 grams/tonne gold from 66.5 to 68.5 metres.

Guyana Frontier reported: “Three of the last six holes drilled in the Marudi North target area encountered varying amounts of gold mineralization in the host rock. The host rock appears to be faulted and deformed in this western area of Marudi North, which made targeting more difficult. For example, in hole MN12-137, a feldspar-porphyry dike and extensive faults were encountered at the expected location of the upper host rock target zone, and the lower zone host rock was not intersected until 195.13 metres to 204.94 metres. In hole MN12-138, the host rock was not intersected, despite its suggested strike and direction interpreted from the 2011 trenching program. In holes MN12-140 and -141, the host rock...
unexpectedly appears to trend westerly and dip southerly. The geological characteristics and mineralization of the host rock at Marudi North are therefore not completely understood, and demands further drilling to determine its full potential.”

7 GEOMORPHIC SETTING AND MINERALIZATION

7.1 Regional Geology

After Lunceford (2009)

The Marudi Property is located approximately in the center of the Guiana Shield in southern Guyana. Regionally the Marudi Property is underlain by Proterozoic metasediments of the Kwitaro Group and the younger Southern Guyana Granite Complex (Figure 10). The Kwitaro Group is mostly comprised of shallow water metasediments with interbedded basic volcanic strata which are metamorphosed to amphibolites facies (Berrangé, 1972). The Southern Guyana Granite Complex is part of the tectono-thermal Trans-Amazonian Orogenic Cycle which resulted in block faulting, crustal shortening, folding, metamorphism, and anatexis (Hurley, et. al. 1967).

The Kwitaro Group in southern Guyana occurs as five discrete metasedimentary blocks, each several hundred square kilometres in extent which are bounded by granites of the Southern Guyana Granite Complex. Despite their discrete distribution, similarities in petrology, metamorphism, and structure of the individual formations and their relationship to other rock units in the region justify their assignment to a single group, dated at 2,090 Ma ±42 m.y. By far the most common lithologies include pelitic and semipelitic, metasediments, now represented by biotite-muscovite phyllites, metasiltstone, schists and gneiss. The Marudi Formation at the base of the Kwitaro Group consists of quartzite and interbedded pelite, quartz pebble conglomerate, and amphibolites probably a basalt or andesitic protolith. The pelites show graded and current stratification, and the quartzites display wide-spaced fracture cleavage. Dips of planar structures and mineral lineation vary from horizontal to steeply dipping to vertical. Mesoscopic shear folding is tight to open. Contact metamorphism within Kwitaro Group units is found locally adjacent to the Southern Guyana Group granites. Veins and dikes of aplite-pegmatite are found within metasedimentary units which also occur as small xenoliths within the granite (Berrangé, 1972).

The Southern Guyana Granite Complex has numerous sub-facies but largely consists of two types: grey, biotite + muscovite, hornblende, epidote granite to granodiorite with steep foliation and/or lineation and less abundant pink, biotite-muscovite + granite that may be fine or coarse-grained, sometimes foliated. The pink granites were concluded by Berrangé (1972) to have evolved metasomatically from the grey granite. The Marudi Granodiorite, which occurs as a small allochthonous pluton may have developed by reactivation and subsequent emplacement and is believed to be associated with gold mineralization. Age dates of the pink granite range from 1,701 Ma ±28 m.y. to 1,838 Ma ±30 m.y. (Berrangé, 1972).

The Marudi Property is dominated by the Marudi Formation which includes a lower pelitic unit, a medial quartzite and meta-andesite unit with subordinate tuff and ironstone (the “quartzite” unit). These rocks are overlain by a massive unit of orthoamphibolite (metabasalt) (Figure 11). Metasedimentary and metavolcanic rocks have been subjected to upper greenschist and lower amphibolite grade regional metamorphism. The Marudi Granodiorite lies mostly north of the north flank of Marudi Mountain.

Although based largely on a review of core at Mazoa, Caumartin (2004) has provided the most complete and detailed descriptions of the “quartzite” unit which hosts all important gold mineralization discovered to date at the Marudi Property. The major rock units from footwall to hanging wall include meta-andesite, quartzite; and muscovite schist with chert silicate magnetite iron interbeds. The medial “quartzite” horizon consists of three rock units, a basal meta–andesite, with tuff, middle magnetite-bearing quartzite, and upper silicate – oxide ironstone and chert.

Meta-andesite - The meta-andesite is a dark green, compact, massive rock with no internal fabric and largely composed of amphibolite and feldspar. Altered pyroxenes and calcite amygdules occur over
specific zones. Deuteritic alteration products – epidote schlieren, white calcite veinlets and scattered bits of red jasper are found throughout the unit. Very fine grained chilled zones and incipient breccia in the upper few metres of the flow are in sharp contact with the overlying quartzite (Caumartin, 2004).

Quartzite - The gold bearing “quartzite” horizon overlying the meta-andesite is a pale blue-grey sometimes white unit, commonly marked by white quartz stringers and veins near the contact. The most prevalent minor component is iron oxide which is pervasive as fine streaks and dusty clouds through the interlocking quartz grains. The oxide in the fresh rock is commonly magnetite. At Mazoa Hill the quartzite occurs with specular hematite in place of magnetite. An acicular green silicate, probably actinolite (?) commonly associated with minor calcite is prominent through some intervals of the quartzite. Iron sulphide occurs as pyrrhotite and pyrite and can display two habits in the quartzite. At Mazoa some intervals contain a very fine dissemination of pyrrhotite. Pyrite, if present, can be sparsely disseminated and is coarser than the associated pyrrhotite. Total sulphide is commonly one to two percent. Manganese occurs as pyrolusite, rhodochrosite, and possibly rhodonite. Portions of the quartzite becomes friable and disaggregate to form a silica sand while other beds become permeable with magnetite grains partly or wholly pseudo morphed by hematite. Blocks of quartzite up to five m in diameter indicate pervasive silica flooding. Based on review of core at Mazoa Caumartin (2004) estimated the thickness of the quartzite unit at approximately 40 m.

Magnetite-silicate iron formation - At Mazoa Hill chert the magnetite-silicate iron formation (referred to as “banded iron formation”) comprises a 0.5 m bed consisting of iron silicates and garnet. Medium green intervals of fine dense massive iron silicate (chlorite? annite?) three to ten cm in thickness are separated by one to three cm layers of brown to beige garnet crystals. Magnetite occurs as a one to two cm compact bed which commonly defines the upper contact zone and can continue as thin layers up-section. One to two cm thick chert beds consisting of cryptocrystalline dark blue grey silica beds quartz in layers one to two cm thick also occur.

Grey, leucocratic, feldspar and quartz feldspar porphyry dikes and a green mafic dike were intersected in some of the drill holes at Mazoa. The dikes strike easterly across the quartzite and dip near vertical or vertical or steeply to the north. Contacts are generally chilled and the fresh felsic dike is very competent. The mafic dikes appear to have been metamorphosed. Foliation is common in cored intervals of mafic dike indicating that they could be older than the feldspar porphyry dikes (Caumartin, 2004).

Metasedimentary and metavolcanic units at the Marudi Property have been complexly deformed with at least two local and three regional generations of folding recognized. The Marudi Property is dominated by chevron style, upright early folds with northeast trends and deep penetrative fabrics on outcrop scale. Refolding along subsequent north-northwest striking cross folds has produced complex locally tight folds and parasitic folds, along or near fold axe.

Fold axes and beds have been offset by a significant northwest striking fault which cuts the Mazoa Hill anticline. Displacement on this fault is uncertain. Vassalo (2008) mapped a significant northeast trending fault between Marudi and Mazoa. Displacement on this fault is unknown at present. Numerous small northeast striking faults were mapped in trenches at Mazoa. At Marudi these small faults generally strike north to north-northwest. Displacement on these faults which predominantly show reverse movement ranges from a few metres to tens of metres. Other east-west faults at Mazoa Hill and Marudi Mountain do not show significant displacement.
Figure 10: Regional Geology

After Gibbs et al 1993
Figure 11: Local Geology
After Lunceford 2009
The Marudi Property and other gold deposits and occurrences within the Guiana Shield have formed in orogenic belts in successive back-arc closure and extensional oceanic arc systems caused by migrating spreading ridges. These deposits form along convergent margins during terrane accretion, translation, or collision, which were related to plate subduction and/or lithospheric delamination. They formed, typically in the latter part of the deformational–metamorphic–magmatic history of the evolving orogen (Groves, et al., 2003).

Throughout the Guiana Shield brittle faults define conjugate patterns that are either trending north-northwest–south-southeast or north-northeast–south-southwest. Several of these faults mark the boundaries of Mesozoic and Cenozoic basins, and have several hundred metres of displacement. The more significant faults became sites of extensive dike emplacement, and some have caused relatively minor offsets of Paleoproterozoic auriferous mineralized zones. Most gold deposits and occurrences discovered to date in the Guiana Shield are found in close proximity to these major brittle faults. Paleo-reconstructions indicate a similar pattern in West Africa. In West Africa the controlling structural trend is northeast-southwest (Figure 12). When compared at a regional scale, shear patterns of West Africa and those of the Guiana Shield appear to define a nearly conjugate pattern (Voicu et. al., 2001). Voicu's interpretation includes a dominant northwest-southeast structural zone (referred to as the MKSZ – Makapa-Kuribrong Shear Zone in Guyana and the CGSZ – Central Guiana Shear Zone in Suriname) transecting the Guiana Shield in Suriname, Guyana and southern Venezuela. On a country scale, the CGSZ in Guyana is considerably less contiguous and more segmented along transposed northeast-southwest cross faults.

Iron-formation hosted gold deposits and occurrences can be divided into two sub-types: stratiform and non-stratiform (Figure 13).

Stratiform Iron-formation hosted gold - In stratiform deposits much of the gold is uniformly disseminated in stratigraphically continuous horizons in well-laminated units of cherty, sulfide-rich banded iron formation that are conformably interlayered with gold and sulfide poor Iron-formation-hosted gold and clastic sedimentary rocks. Iron sulfide minerals are deformed and metamorphosed but oxide Iron-formation-hosted gold is lacking. Late quartz veins or shear zones are volumetrically significant but their control on gold and iron-sulfide is unclear. Arsenic bearing minerals, if present are generally restricted to alteration zones immediately proximal to late quartz veins. Property scale alteration is lacing and veins which are commonly chlorite-rich. Mineralized material is silver-rich relative to non-stratiform Iron-formation hosted gold and has gold/silver ratios of 3.0 to 7.0. World examples include Lupin, in Canada; Homestake in North Dakota (US), and Morro Vehho; and Cuiabá in Brazil (Kerswill, 1993).

Non-stratiform Iron-formation-hosted gold – In non-stratiform deposits gold is restricted to late structures (quartz veins) and/or shear zones, and in sulfide banded iron formation immediately adjacent to structures. Mineralized material commonly occurs in discrete small shoots separated by barren (gold and sulfide poor) typically oxide banded iron formation. Mineralized bodies and iron sulfide minerals are generally less deformed and metamorphosed than associated rocks. Pyrite and/or pyrrhotite have replaced other pre-existing iron-rich minerals. Arsenic minerals are common but not always present. Property scale alteration occurs and is usually typical to that of “mesothermal veins”. Gold/silver ratios are >8.0 and deposits tend to be smaller and more difficult to evaluate and mine than stratiform Iron-formation-hosted gold. Deposit examples include Geraldton and the Pickle Crow in Canada; Nevoria in Western Australia; and the São Bento mine in Brazil (Kerswill, 1993).

Gold mineralization at the Marudi Property is hosted in Lower Proterozoic metasedimentary and metavolcanic rocks and the regional tectonic setting is similar to other deposits in the Guiana Shield. Although not regarded as an iron-formation hosted gold system, Gross Rosebel in northeast Suriname gold mineralization has similarities to the Marudi Property in terms of the deformational style and vein emplacement. The property covers the sediment-dominated Rosebel Formation and the older Armina
Formation made up of volcanic flows, volcaniclastics and graywackes. The sequence has been folded into an east-west striking, west plunging synclinorium while some doming and thrusting occurred around the granitic batholith. Metamorphism is greenschist to lower amphibolite (Johnson, 2002). Gold mineralization is associated with at least three generations of strongly deformed quartz veins that were formed in distinct settings: (a) plunging fold axes and fold closures; (b) stratigraphic and lithologic contacts and; (c) discrete sub-vertical shear zones. Veins vary in thickness from a few centimetres to two metres (Voicu, 2001).

Figure 12: Paleoproterozoic reconstruction of the Guiana and West African shields

The Marudi Property is shown as a red triangle. The current configuration of both Paleo-Proterozoic shields may suggest that NW–SE trending shear systems affecting the Guiana Shield are older than NE–SW shear system of the West African Shield. According to a late-Paleozoic plate tectonic reconstruction, Florida used to occupy the bridging position between the West African and Guiana Shields (after Voicu et. al., 2001)
Figure 13: Schematic diagrams

Schematic diagrams of stratiform and non-stratiform IFG (after Kerswill, 1993).

9 EXPLORATION

Swift has not undertaken an exploration program on the Marudi Property.

10 DRILLING

Swift has not performed any drilling on the Marudi Property to date. Any historical drilling on the Property is illustrated in the history and mineralization sections of this report.

11 SAMPLING PREPARATION, ANALYSIS AND SECURITY

The author is unable to discuss sampling by Swift, as Swift has not yet undertaken an exploration program.

There was no bias in the sampling program completed during the property visit, which was undertaken to test the repeatability of sample results obtained from previous sampling campaigns. The author designed the program solely as a quality control measure.
Luneford (2009) reported that: "pre-Shoreham sampling and drilling programs were supervised by experienced and well-qualified professionals whose credentials were not formally classified as Qualified Persons pursuant to NI 43-101. However, it is the opinion of the author that the data is credible and consistent with industry standard protocols and procedures and it is evident that the information was collected under supervision of professional geologists and engineers."

The author of this report does not have access to the data that Luneford did in 2009 and therefore cannot comment. However, the information and data offered in the Luneford 2009 report is deemed by the author to have professional merit.

The author reviewed historical data which was post 2009. The review included mainly press releases and data indicate that the sampling and drilling programs that were supervised by qualified persons. The quality control and quality assurance protocols drilling and trenching programs relied on industry-standard methods.

Trench samples were checked using pan concentrates to obtain grain counts and verify mineralogy as a field check on gold bearing horizons. Sampling quality assurance and quality control protocols for historical work (post 2009) and trench sampling programs were designed and implemented by a qualified person to allow for integration of the data into future resource calculations when recommended drill programs are completed. It is the opinion of the author that quality assurance-quality control protocols, which were designed and implemented by a qualified person and are appropriate for the sampling program executed.

At the current stage of exploration, the geological controls and true widths of mineralized zones are not known and the occurrence of any significantly higher-grade intervals within lower grade intersections has not been determined.

12 DATA VERIFICATION

The author is satisfied with adequacy of sample preparation, security and the analytical procedures used for the six rock and one soil samples collected on the Property by the author during his property visit (Table 6 and Figure 14). The author is of the opinion that the description of sampling methods and details of location, number, type, nature and spacing or density of samples collected and the size of the area covered, as discussed below, are adequate for the current stage of exploration on the Property.

There was no bias in the sampling program completed during the Property visit that was undertaken to test the repeatability of sample results obtained from previous sampling campaigns. The author solely, as a quality control measure, designed the program.

The author visited the Property from November 11th, 2016 to November 12th, 2016, with Locke Goldsmith and Marshall Mintz and examined several locations on the Properties to determine the overall geological setting.

The author hand delivered all seven samples collected to Actlabs Guyana located in Georgetown Guyana (an accredited ISO 9001 laboratory pursuant to NI 43-101). The soil samples underwent assay package 1E3 which includes a 38-element *Aqua Regia* ICP-OES analysis. All the samples underwent an assay package 1A3-30 which is Au Fire Assay–Gravimetric, any sample that was over limits underwent 1A3-30 Au Fire Assay–Gravimetric Assay Actlabs Guyana is independent of Swift, the Vendors, and the author of this report.
Table 6: Author Collected Sample and Select Assay

<table>
<thead>
<tr>
<th>Sample No</th>
<th>Type of Sample</th>
<th>WGS84E</th>
<th>WGS84N</th>
<th>Zone</th>
<th>Repeat Sample</th>
<th>Comments</th>
<th>Au ppb</th>
<th>Au g/t</th>
</tr>
</thead>
<tbody>
<tr>
<td>M16-01</td>
<td>Rock/Grab</td>
<td>258795</td>
<td>245327</td>
<td>21</td>
<td></td>
<td>Sample taken from pile of rock that came from artisanal miners in a hole.</td>
<td></td>
<td>1500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>This is the area of the Kilbore resources pit. Quartzite with trace py?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M16-02</td>
<td>Rock/Grab</td>
<td>258140</td>
<td>246842</td>
<td>21</td>
<td></td>
<td>Taken from active artisanal pit, quartzite outcrop, has been exposed by</td>
<td></td>
<td>42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>miners in the past few months, trace pyrite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M16-03</td>
<td>Soil Trench</td>
<td>257508</td>
<td>245611</td>
<td>21</td>
<td>Trench F, 9-12 m</td>
<td>Resample Channel sample between 9 to 12 m</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>M16-04</td>
<td>Drill Core</td>
<td>257948</td>
<td>247032</td>
<td>21</td>
<td>5613</td>
<td>a repeat of 1.332 ppm gold over 1.14 m 24.36-25.5 m in MN12-135</td>
<td></td>
<td>793</td>
</tr>
<tr>
<td>M16-05</td>
<td>Drill Core</td>
<td>257948</td>
<td>247032</td>
<td>21</td>
<td>5618</td>
<td>a repeat of 2.302 ppm gold over 3.73 m 32.07-35.80 m in MN12-135</td>
<td></td>
<td>417</td>
</tr>
<tr>
<td>M16-06</td>
<td>Drill Core</td>
<td>257682</td>
<td>247073</td>
<td>21</td>
<td>6286</td>
<td>a repeat of 4.47 ppm gold over 2.00 m 74.5-76.5 m in MN12-140</td>
<td></td>
<td>2468</td>
</tr>
<tr>
<td>M16-07</td>
<td>Drill Core</td>
<td>258650</td>
<td>245528</td>
<td>21</td>
<td>5099</td>
<td>a repeat of 51.7 g/t gold over 1.46 m 17-64.63 m in MN12-130</td>
<td></td>
<td>>3000</td>
</tr>
</tbody>
</table>

The author is satisfied with the adequacy of the sample preparation and security, and the procedures used in the collection of the eight samples during the site visit.

During the site visit the author observed in several locations where artisanal miner have excavated saprolite and hard rock for gold and, based on the author’s GPS, these locations are well within the Marudi Property boundary. The author is not sure of the exact number of workings, however Guyana Ministry of Natural Resources suggest at least 70 locations (see Section 16). The adits observed did not appear safe to enter. In addition, the author observed a number artisanal miners currently working within the Property area.

The author did not investigate the mining methods use by the artisanal miners. This year’s Environmental Protection Agency reported six instances of mercury being using in gold extraction (see Section 16).
Figure 14: Author Collected Samples
13 MINERAL PROCESSING AND METALLURGICAL TESTING

No metallurgical testing on Property material has been undertaken by Swift.

Luneford (2009) reported that the Marudi Mountain Project, specifically the Mazoa Hill Mineralized zone, has been subject to metallurgical testing including bottle roll tests, mineralogical work and experiments with heap leaching by Witteck Development (1982), Westcoast Mineral Testing, Inc. (1991, 1993), and Ferron and Dymov (1995) of Lakefield Research Ltd. Some of this work was summarized by Caumartin (2005) but the author of this report has not had the opportunity to review the underlying data and procedures with the exception of the report by Lakefield Research Ltd. Consequently the important questions of the nature of some of the samples, grade, sample preparation and procedures may not be addressed in this report.

Luneford (2009) reported that Caumartin (2005) reports that the mineralized samples described below (1982-1993) were responsive to conventional cyanidation which suggested a good possibility of enhancement by pre-concentration by flotation and/or gravity methods. Kilborn Engineering Ltd. considered a recovery in the order of 90% to be achievable using a cyanide leach and carbon-in-pulp type process. Caumartin (2005) recognized that this is a relatively low recovery which could possibly be improved with further test work. Lacking details concerning work indices, an estimate of 20 kw/hr per tonne was assumed for both the SAG and the ball mills.

Significant results in this report were:
- a sample pulverized to 100% passing 18 mesh yielded 89% dissolution after a 72-hour agitated cyanide leach;
- a sample ground to 80% passing 75 microns, yielded 78.7, 92.6 and 94.5% dissolution after 24, 48 and 72 hours cyanide leaching respectively;
- lime consumption was 10.3 kg per tonne and cyanide consumption was 1.3 kg per tonne;
- flotation recovery on a single test gave 65% recovery to seven percent by weight of the feed; and
- column leaching resulted in 80% dissolution in 160 hours but permeability problems were encountered.

Hawthorn (1991) reported significant results were:
- a ground sample, pre-aerated for 24 hours, yielded 87.8% dissolution with cyanide consumption of 0.4 kg per tonne;
- a ground sample was hand panned and 41.4 percent of the gold was concentrated in 1.3 percent of the original mass. Cyanation of the tailings from the gravity concentration stage resulted in almost complete dissolution. Cyanide consumption was 2.9 kg per tonne;
- a single flotation test recovered 90.6% of the gold to four percent of the original mass; and
- in an addendum dated May 20, 1993 assays were provided for individual size fractions of tails from the cyanidation test described above. Results show that most gold losses occurred in the finest fractions. Approximately 70% reports to the -75 micron size.

Luneford (2009) reported leaching Test L-4 by Westcoast Mineral Testing Inc. for Romanex Management Ltd., June 8, 1993. In this test an “as received” sample was cyanide leached for 24 hours using a bottle roll method. Dissolution was 58.1% with the majority of losses occurring in the finest (-100 mesh) fraction.
From the available test work, Westcoast concluded:

- Cyanidation of the sample with a grind size of 80% passing 75 micron will achieve in excess of 90% dissolution in 24 to 48 hours;
- Neither flotation nor gravity separation has been established as a viable route or as a unit operation within the context of a cyanide based process;
- Cyanide consumption is greatly reduced by pre-aeration however lime consumption can be expected to be high;
- Gold losses in cyanidation tailings are associated with the finest fraction; and
- Heap leach has not been eliminated as a possible process route

In 1995, Sutton commissioned Lakefield Research Ltd. to conduct metallurgical tests on a composite sample of Marudi mineralized material (Ferron, Dymov, 1995). The material submitted for test work included a composite of eight samples. Although not specifically stated in the report. The 6-7 kilogram sample had head analyses as follows:

- Expected head grade (reported by Sutton) = 2.49 g/t Au
- Assayed direct head grade= 2.11 g/t Au
- Bench scale test work average calculated head grade = 2.68 g/t Au
- Heap leach test calculated head grade= 2.86 g/t Au

Two cyanidation tests were conducted on minus ¼ inch sample for a duration of five and fourteen days respectively, and a third test conducted on minus 10 mesh material for five days. The cyanidation tests were conducted at 40% solids and pH of 10.5-11 with 1 g/L NaCn concentration maintained throughout the test.

Ferron and Dymov (1995) concluded that a bottle roll test on minus 10 mesh material recovered 93% of the gold in five days with a consumption of 0.3 kg/t cyanide. Bottle roll tests on minus ¼ inch material recovered 59-67% of the gold in five to fourteen days. Kinetic discrepancies indicated the presence of free gold. A column test (four inch by five feet) on agglomerated minus ¼ inch material recovered 65% of the gold in 23 days, calculated from an average gold assay of three sub-samples of the leach residue.

14 MINERAL RESOURCES

There are no mineral resources on the Property.

15 ADJACENT PROPERTIES

In discussions with the both the Property Vendors and Swift, there are currently no known adjacent properties.
16 OTHER RELEVANT DATA AND INFORMATION

On April 24, 2016, Romanex Guyana Exploration Limited entered into an agreement with stake holders in the area on the Marudi Property proper.

The agreement states that 70 artisanal that are currently working on the Marudi Property are to cease and remove all equipment and miners by May 1, 2016 after which the Guyana Ministry of Natural Resources will conduct (no later than May 15th, 2016) a site visit. The site visit is to address, health and safety, Mining methods, and the current status of the 70 artisanal mining operations.

Romanex Guyana Exploration Limited is to arrange for Environmental and Social Impact Assessment (ESIA) and a Mine plan. This should include the integration of the Rupununi Miners Association and also the relevant Amerindian communities.

The Ministry of Natural Resources generated a Summary Report on the Marudi Mountains Romanex, ML, Region 9 from their site visit from May 10-15 2016. The site visit consisted of the following representatives Guyana Geology and Mines Commission (“GGMC”), Environmental Protection Agency (“EPA”), Guyana Police Force, Ministry of Natural Resources, Indigenous Communities and Romanex. The purpose of the visit was to interact with the miners, verify the agreement dated April 24, 2016 (above) and ensure regulatory compliance of relevant laws.

The EPA and GGMC found that six operations were using amalgam plates in their gold recovery process and discharging in to the creek. These six operations were issued stop work order and their equipment seized. An out of court settlement was settled for four of these operations by the way of posting a bond of $300,000 (~$2,000 CDN) Guyanese dollars. The other two operations belong to one individual and this situation has now been resolved as of November 23, 2016.

The EPA found that the local artisanal miners operated without regard to the Mining Act, Environment Act, and other various regulations that govern mining activities.

EPA recommendations included all mining operations be standardized to be in line with Best Management Practices, develop a targeted education and awareness program of Best Mining Practices, regulations, and other stake hold concerns.

The EPA and GGMC stated that no hard material be excavated until the ESIA is completed, However, soft rock extraction is allowed.

GGMC removed the regulatory suspension of the Marudi Property Mining Lease. Romanex will update the ESIA which will allow EPA to issue permit for production.

As of the effective date of this report Romanex has not signed a final ESIA, but does have a working version dated July 14, 2016. The working budget of ~$330,000 US dollars and the proposal does not give a time line as to the required time to complete the ESIA.

Figure 15 illustrates the areas where the artisanal miners have worked the creeks in their efforts to extract gold on the property. Their mining techniques appear to be rudimentary as a result the recovery of any gold may be poor.
Figure 15: Internal Artisanal Workings
17 INTERPRETATION AND CONCLUSIONS

The central zone, which includes Mazoa Hill, Peace Creek and Marudi Mountain, is characterized by fine gold associated with massive iron formation, locally lenticular and relatively continuous, and extensive coarse brecciated metavolcanics, locally silicified. The north Zone, historically productive areas of Toucan Hill and Paunch Creek, is characterized by fine and very fine gold, associated with massive iron formations with extensive breccia in intercalated andesitic volcanic rocks.

At the Marudi Property, all significant gold mineralization discovered to date is associated with magnetite-silicate iron formation (banded iron formation) sequences. At outcrop scale, depositional sites were likely controlled by rheological contrasts, delamination along bedding planes, and at permeability boundaries. Diamond drill hole data suggest gold occurs in stratiform zones and is concentrated at primary and secondary fold axes and parasitic folds. However, the extent of the gold bearing stratigraphic sequence away from fold axes is undetermined at present. Gold mineralization at the Marudi Property is also associated with extensive iron-oxide “breccias dikes” consisting of quartzite stratigraphic sequence with a hematite matrix. Not all of these structures, which reach dimensions exceeding one kilometre along strike and up to 100 m in width as swarms, are mineralized. Two breccia dikes located at the south end of Mazoa Hill are gold bearing based on alluvial gold within drainages that lead southward from the dikes and geochemical soil sampling.

One of the more intriguing targets for exploration is the southern “breccia dikes” south-southwest of the Mazoa target. Soil sample lines that cross these “breccias dikes” were mapped at the south end of Mazoa and indicate anomalous gold values for at least one kilometre along the southernmost soil line. Historic exploration focused on less than two square kilometres of area that contained less than 1,000 m of iron formation in the Mazoa Hill and the southern Marudi Mountain areas. The two historic target areas Marudi Mountain and Mazoa Hill lie within a six kilometre area that was investigated and geologically mapped. The six-kilometre area of investigation lies within a 30-kilometre area which has known gold prospects and workings.

Results of work programs prior to Vannessa’s tenure in 1999 are variably documented and somewhat fragmentary. However, data is believed to be credible and reliable from these early programs which included extensive drilling between 1946 and 1999. Work programs completed by Vannessa between 1999 and 2005, Shoreham during Guyana Frontier Mining Corp. 2007-2012, are in conformance with industry standard practices. Both the Vannessa and Shoreham/Guyana Frontier Mining Corp work programs employed quality assurance-quality control protocols and methods and in the case of the Shoreham/Guyana Frontier, activities were supervised by a qualified person.

Previous metallurgical studies conducted between 1982 and 1995 indicate the mineralized rock is responsive to conventional cyanidation and pre-concentration by flotation or gravity methods and potentially amenable to heap leaching. Recoveries which averaged around 90% were achievable and have not been optimized by further test work.

There is clearly a significant database on this property that is currently not available. The Vendors have indicated that they have tried to track this down, however as of the effective date of this report it has not been located. The vendor and the Swift should continue to try to locate this information.

The commencement of the ESIA is an important step in developing a baseline for the Property. This will allow all the stake holders to have clear understanding of the current conditions and future obligations for the property.

Locke Goldsmith, P. Geo, in 2011 recognized that population of high gold tends to cluster above and near quartzite/metachert subcrop and in adjacent saprolite derived from mafic rock with scattered decomposed quartzite remnants. Sources are tentatively interpreted to be auriferous horizons in the stratigraphically lowest interval of quartzite in repeated beds intercalated with mafic flows. Values
continue in saprolite samples easterly and downslope, Au levels decreasing with distance from quartzite. Saprolite creep has probably dispersed Au downslope from weathered quartzite bedrock sources.

Goldsmiths observation represents an excelled target for future work. Work should be large scale trenching/bulk sampling of the saprolite. The program would allow the extraction of any gold that maybe present, and if planned correctly could increase the confidence in possible future resources.

There is a significant risk that the Property may not contain mineralization in economic quantities. As of the effective date of this report the author is not aware of any other significant risks that could affect, access, mineral title, ability to obtain permits, ability to undertake exploration or the general economic viability of the Property that has not been included in this report.

The author is of the opinion that the present study has met it original objectives.

18 RECOMMENDATIONS

The recommendation is composed of a two-stage approach for further work on the Property.

Stage One

The suggested work program includes compilation of all the historical geological, geophysical and geochemical data and rendering this data into a digital database in GIS formats for further interpretation. This work will include georeferencing historical survey grids, samples, trenches, geophysical survey locations, and detailed property geological maps. This stage would be concurrent with the required ESIA.

Additionally Swift should undertake testing pitting in the saprolite in the areas identify by Goldsmith in 2011. These test pits need to be of a meaningful size and distribution. A small gravity feed sampling plant should set up on site. This would permit meaningful real-time results that can focus subsequent work. A complimentary ground penetrating radar survey would help refine test pitting locations.

Table 7: Summary of Expenditure Stage One

<table>
<thead>
<tr>
<th>Activity</th>
<th>No. of Units</th>
<th>RATE</th>
<th>Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Pitting all in cost</td>
<td>30</td>
<td>$3,000</td>
<td>$90,000</td>
</tr>
<tr>
<td>Ground Penetrating Radar all in cost per line kilometre</td>
<td>40</td>
<td>$500</td>
<td>$20,000</td>
</tr>
<tr>
<td>Data Compiling</td>
<td></td>
<td></td>
<td>$20,000</td>
</tr>
<tr>
<td>ESIA Commencement</td>
<td></td>
<td></td>
<td>$50,000</td>
</tr>
<tr>
<td>Small processing plant</td>
<td></td>
<td></td>
<td>$5,000</td>
</tr>
<tr>
<td>Management</td>
<td></td>
<td></td>
<td>$20,000</td>
</tr>
<tr>
<td>Subtotal - Field Program Expenses</td>
<td></td>
<td></td>
<td>$205,000</td>
</tr>
<tr>
<td>Contingency 10%</td>
<td></td>
<td></td>
<td>$20,500</td>
</tr>
<tr>
<td>Total US Dollars</td>
<td></td>
<td></td>
<td>$225,500</td>
</tr>
</tbody>
</table>

Stage Two

Stage Two is contingent on the results of Stage One. If the gold values in stage one are significant enough then these areas should be expanded by larger bulk samples of the saprolite. These bulk samples would ideally be processed on site. In addition, a 2000-meter drill program to the test the hard rock potential is recommend while bulk testing. In conjunction with the bulk sampling and drilling program the following improvements to the infrastructure are warranted, these includes the road into site, camp, and possible airstrip. Stage Two would also see the continuance of the ESIA process.
Table 8: Summary of Expenditure Stage two

<table>
<thead>
<tr>
<th>Activity</th>
<th>No. of Units</th>
<th>RATE</th>
<th>Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk Sampling of Saprolite (based on phase one)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr Geologist</td>
<td>120</td>
<td>$650</td>
<td>$78,000</td>
</tr>
<tr>
<td>Camp Staff, Foreman & Security</td>
<td>120</td>
<td>$500</td>
<td>$60,000</td>
</tr>
<tr>
<td>First Aid Attendant/ Equipment</td>
<td>120</td>
<td>$500</td>
<td>$60,000</td>
</tr>
<tr>
<td>Assays</td>
<td>750</td>
<td>$40</td>
<td>$30,000</td>
</tr>
<tr>
<td>Environmental Monitor</td>
<td>120</td>
<td>$500</td>
<td>$60,000</td>
</tr>
<tr>
<td>Heavy Equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Excavators Rental with operator</td>
<td>120</td>
<td>$1,500</td>
<td>$180,000</td>
</tr>
<tr>
<td>D7 Cat Rental with operator</td>
<td>120</td>
<td>$1,000</td>
<td>$120,000</td>
</tr>
<tr>
<td>3 Truck rental</td>
<td>120</td>
<td>$400</td>
<td>$48,000</td>
</tr>
<tr>
<td>Improvements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airstrip. Road, camp upgrade</td>
<td></td>
<td></td>
<td>$120,000</td>
</tr>
<tr>
<td>Camp cost Per man day in camp.</td>
<td>1800</td>
<td>$100</td>
<td>$180,000</td>
</tr>
<tr>
<td>Processing Plant for bulk sampling</td>
<td></td>
<td></td>
<td>$100,000</td>
</tr>
<tr>
<td>Travel to site for various crews</td>
<td></td>
<td></td>
<td>$24,000</td>
</tr>
<tr>
<td>Reporting and Record keeping</td>
<td></td>
<td></td>
<td>$25,000</td>
</tr>
<tr>
<td>ESIA Continuation</td>
<td></td>
<td></td>
<td>$150,000</td>
</tr>
<tr>
<td>Drilling 2000 meters.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hard rock Drilling all in cost per meter</td>
<td>2000</td>
<td>$300</td>
<td>$600,000</td>
</tr>
<tr>
<td>Subtotal - Field Program Expenses</td>
<td></td>
<td></td>
<td>$1,835,000</td>
</tr>
<tr>
<td>Contingency 10%</td>
<td></td>
<td></td>
<td>$183,500</td>
</tr>
<tr>
<td>Total US Dollars</td>
<td></td>
<td></td>
<td>$2,018,500</td>
</tr>
</tbody>
</table>
19 REFERENCES

Anonymous, 19077, Geological Map of Suriname, 1:500 00. Geologisch, Mijnbouwkundige Dienst, Suriname

Ceres, C.P., 2009a, Status Update on Alluvial Mining at Marudi: Private memorandum for Shoreham Resources Ltd., 1 p.

Guyana Frontier Mining Corp

News Release, 24-Aug-11, Guyana Frontier resamples 151 m of 2.6 g/t Au at Marudi, www.sedar.ca
News Release, 31-Oct-11, Guyana trenches up to 12 g/t Au at Marudi Mountain, www.sedar.ca
News Release, 15-Nov-11, Guyana Frontier drills 94.5 m of 0.30% Cu at Sardine, www.sedar.ca
News Release, 14-Feb-12, Guyana Frontier starts 3,000 m of drilling at Marudi, www.sedar.ca
News Release, 16-Mar-12, Guyana Frontier completes two holes at Marudi Mountain, www.sedar.ca
News Release, 2-May-12, Guyana Frontier drills 6.5 m of 14.85 g/t Au at Marudi, www.sedar.ca
News Release, 24-May-12, Guyana Frontier drills 17.55 m of 4.29 g/t Au at Marudi, www.sedar.ca
News Release, 6-Jun-12, Guyana reviews Marudi historical resource estimate, www.sedar.ca
News Release, 22-Jun-12, Guyana Frontier drills 8.19 m of 1.9 g/t Au at Marudi, www.sedar.ca

Goldsmith, L., 2011 notes to on the 2011 Trenching program, personal communication.

20 CERTIFICATE OF AUTHOR

I, Derrick Strickland, do hereby certify as follows:

I am a consulting geologist, at 1251 Cardero Street, Vancouver, B.C.

This certificate applies to the report entitled “NI 43-101 Technical Report on the Marudi Property, Guyana 2° 13’ 31” North, 59° 10’ 01” West For Swift Resources Inc., Dated November 30, 2016”.

I am a graduate of Concordia University of Montreal, Quebec, with a B.Sc. in Geology, 1993.

I am a Practicing Member in good standing of the British Columbia Association of Professional Engineers, Geologists and Geophysicists, license # 278779 since 2003. I have been practicing my profession continuously since 1993, and have been working since 1986 in gold, precious, base metal, and coal mineral exploration throughout Canada, United States, Europe, China, Mongolia, Bolivia, West Africa, Papua New Guinea, Laos, Chile, and Pakistan.

I have read the definition of “qualified person” set out in National Instrument 43-101 (“NI 43-101”) and certify that by reason of my education, affiliation with a professional organization (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a “qualified person” for the purposes of NI 43-101.

I am responsible for all sections of the report entitled “NI 43-101 Technical Report on the Marudi Property, Guyana 2° 13’ 31” North, 59° 10’ 01” West for Swift Resources Inc., Dated November 30 2016”. I visited the properties which are the subject of the report from November 11 to November 12, 2016.

To the best of my knowledge, as of the effective date of the report, I am not aware of any information or omission of such information that would make this misleading. This Technical Report contains all the scientific and technical information that is required to be disclosed to make the technical report not misleading.

I am independent of Swift Resources Inc., Romanex (Guyana) Ltd., Locke Goldsmith and Marshall Mintz, in applying all of the tests in section 1.5 of National Instrument 43-101. For greater clarity, I do not hold, nor do I expect to receive, any securities of any other interest in any corporate entity, private or public, with interests in the Marudi Property that is the subject of this report or in the property, nor do I have any business relationship with any such entity apart from a professional consulting relationship with Swift Resources Inc., nor do I, to the best of my knowledge, hold any securities in any corporate entity within a two (2) kilometre distance of any part of the subject Marudi Property.

To the best of my knowledge, I have no prior involvement with the properties that are the subject of the Technical Report.

I have read National Instrument 43-101 and Form 43-101F1, and attest that the Technical Report has been prepared in compliance with that instrument and form.

I consent to the use of extracts, or summary of this Technical Report.
21 DATE AND SIGNATURE PAGE

The effective date of this technical report is November 30, 2016.

Original signed and sealed

Signature of Qualified Person
Derrick Strickland P.Geo.

Dated this 30 Day of November, 2016